Induction of Ethylene Biosynthesis in Nicotiana tabacum
نویسندگان
چکیده
Xylanase (EIX) from the fungus Trichoderma viride elicits ethylene biosynthesis in leaf tissues of Nicotiana tabacum cv Xanthi but not in cv Hicks. The increase in ethylene biosynthesis is accompanied by an accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC), an increase in extractable ACC synthase activity, and increases in ACC synthase and ACC oxidase transcripts. Priming of leaves with ethylene (120 pL/L, 14 h) sensitizes the tissue, resulting in an enhanced response to EIX and increases in both the in vivo ACC oxidase activity and ACC oxidase transcript level. EIX and ethylene independently induce ACC oxidase. Inhibition of ethylene biosynthesis by aminoethoxyvinylglycine is not accompanied by a reduction in ACC oxidase transcript level, indicating that ethylene biosynthesis is not required. In contrast to the differential induction of ethylene biosynthesis by EIX in Xanthi versus Hicks cultivars, both cultivars respond to a chemical stress (induced by CuSO,) by enhancing ethylene production. This induction is accompanied by an increase in ACC synthase transcript but not in that of ACC oxidase.
منابع مشابه
Nucleotide Sequence of the Nicotiana tabacum cv Xanthi Gene Encoding 1-Aminocyclopropane-1-Carboxylate Synthase.
Ethylene is a plant hormone that influences many aspects of plant growth and development (10). The biosynthetic pathway of ethylene production in higher plants is well defined. The rate-limiting step in this pathway is the reaction catalyzed by ACC' synthase (S-adenosyl-L-methionine methyl-thioadenosine-lyase, EC 4.4.1.4), which converts Sadenosyl-L-methionine to ACC. Tobacco (Nicotiana tabacum...
متن کاملPhosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis.
Mitogen-activated protein kinases (MAPKs) are implicated in regulating plant growth, development, and response to the environment. However, the underlying mechanisms are unknown because of the lack of information about their substrates. Using a conditional gain-of-function transgenic system, we demonstrated that the activation of SIPK, a tobacco (Nicotiana tabacum) stress-responsive MAPK, induc...
متن کاملUpregulation of Phosphatidylinositol 3-Kinase (PI3K) Enhances Ethylene Biosynthesis and Accelerates Flower Senescence in Transgenic Nicotiana tabacum L.
Phosphatidylinositol 3-kinase (PI3K) is a key enzyme that phosphorylates phosphatidylinositol at 3'-hydroxyl position of the inositol head group initiating the generation of several phosphorylated phosphatidylinositols, collectively referred to as phosphoinositides. The function of PI3K in plant senescence and ethylene signal transduction process was studied by expression of Solanum lycopersicu...
متن کاملAntagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is effective against a broad range of pathogens. SAR development in dicotyledonous plants, such as tobacco (Nicotiana tabacum) and Arabidopsis thaliana, is mediated by salicylic acid (SA). Here, using two types of SAR-inducing chemicals, 1,2-benzisothiazol-3(2H)-one1,1-dioxide and benzo(1,2,3)thiadiazole-7-carb...
متن کاملBiochemical plant responses to ozone : I. Differential induction of polyamine and ethylene biosynthesis in tobacco.
Polyamine metabolism was examined in tobacco (Nicotiana tabacum L.) exposed to a single ozone treatment (5 or 7 hours) and then postcultivated in pollutant-free air. The levels of free and conjugated putrescine were rapidly increased in the ozone-tolerant cultivar Bel B and remained high for 3 days. This accumulation was preceded by a transient rise of l-arginine decar-boxylase (ADC, EC 4.1.1.1...
متن کامل